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This chapter was devoted to the analysis and design of shafts subjected 
to twisting couples, or torques. Except for the last two sections of the 
chapter, our discussion was limited to circular shafts.

Deformations in Circular Shafts
The distribution of stresses in the cross section of a circular shaft is stati-
cally indeterminate. The determination of these stresses requires a prior 
analysis of the deformations occurring in the shaft [Sec. 3.1B]. In a cir-
cular shaft subjected to torsion, every cross section remains plane and 
undistorted. The shearing strain in a small element with sides parallel 
and perpendicular to the axis of the shaft and at a distance r from that 
axis is

 g 5
rf

L
 (3.2)

where f is the angle of twist for a length L of the shaft (Fig. 3.55). Equa-
tion (3.2) shows that the shearing strain in a circular shaft varies linearly 
with the distance from the axis of the shaft. It follows that the strain is 
maximum at the surface of the shaft, where r is equal to the radius c of 
the shaft:

 gmax 5
cf

L
   g 5

r

c
Ê gmax (3.3, 4)

Shearing Stresses in Elastic Range
The relationship between shearing stresses in a circular shaft within the 
elastic range [Sec. 3.1C] and Hooke’s law for shearing stress and strain, 
t 5 Gg, is

 t 5
r

c
Ê tmax (3.6)

which shows that within the elastic range, the shearing stress t in a circular 
shaft also varies linearly with the distance from the axis of the shaft. Equat-
ing the sum of the moments of the elementary forces exerted on any sec-
tion of the shaft to the magnitude T of the torque applied to the shaft, the 
elastic torsion formulas are

 tmax 5
Tc
J

  t 5
Tr

J
 (3.9, 10)

where c is the radius of the cross section and J its centroidal polar moment 
of inertia. J 5

1
2 pc4 for a solid shaft, and J 5

1
2 p1c4

2 2 c4
12 for a hollow shaft 

of inner radius c1 and outer radius c2.

We noted that while the element a in Fig. 3.56 is in pure shear, the element 
c in the same figure is subjected to normal stresses of the same magnitude, 
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Fig. 3.55 Torsional deformations. 
(a) The angle of twist f. (b) Undeformed 
portion of shaft of radius r. (c) Deformed 
portion of shaft; angle of twist f and 
shearing strain g share same arc 
length AA’.
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Fig. 3.56 Shaft elements with only 
shearing stresses or normal stresses.
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TcyJ, with two of the normal stresses being tensile and two compressive. 
This explains why in a torsion test ductile materials, which generally fail 
in shear, will break along a plane perpendicular to the axis of the speci-
men, while brittle materials, which are weaker in tension than in shear, 
will break along surfaces forming a 458 angle with that axis.

Angle of Twist
Within the elastic range, the angle of twist f of a circular shaft is propor-
tional to the torque T applied to it (Fig. 3.57).

 f 5
TL
JG

 (units of radians) (3.15)

where  L 5 length of shaft
 J 5 polar moment of inertia of cross section
 G 5 modulus of rigidity of material
  f is in radians

If the shaft is subjected to torques at locations other than its ends or con-
sists of several parts of various cross sections and possibly of different 
materials, the angle of twist of the shaft must be expressed as the algebraic 
sum of the angles of twist of its component parts:

 f 5 a
i

TiLi

JiGi
 (3.16)

 When both ends of a shaft BE rotate (Fig. 3.58), the angle of twist is 
equal to the difference between the angles of rotation fB and fE of its ends. 
When two shafts AD and BE are connected by gears A and B, the torques 
applied by gear A on shaft AD and gear B on shaft BE are directly propor-
tional to the radii rA and rB of the two gears—since the forces applied on 
each other by the gear teeth at C are equal and opposite. On the other 
hand, the angles fA and fB are inversely proportional to rA and rB—since 
the arcs CC9 and CC0 described by the gear teeth are equal.

Fig. 3.57 Torque applied to fixed end shaft 
resulting in angle of twist f.
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Fig. 3.58 Angles of twist at E, gear B, and gear A 
for a meshed-gear system.

C''

T

E�

B�

C

Fixed end

B

L

A

D

A�

C'

E

bee98233_ch03_209-235.indd   224bee98233_ch03_209-235.indd   224 11/15/13   11:42 AM11/15/13   11:42 AM



225

Statically Indeterminate Shafts
If the reactions at the supports of a shaft or the internal torques cannot be 
determined from statics alone, the shaft is said to be statically indetermi-
nate. The equilibrium equations obtained from free-body diagrams must 
be complemented by relationships involving deformations of the shaft 
and obtained from the geometry of the problem.

Transmission Shafts
For the design of transmission shafts, the power P transmitted is

 P 5 2p f T (3.19)

where T is the torque exerted at each end of the shaft and f the frequency
or speed of rotation of the shaft. The unit of frequency is the revolution 
per second (s21) or hertz (Hz). If SI units are used, T is expressed in 
newton-meters (N?m) and P in watts (W). If U.S. customary units are used, 
T is expressed in lb?ft or lb?in., and P in ft?lb/s or in?lb/s; the power can 
be converted into horsepower (hp) through

1 hp 5 550 ft?lb/s 5 6600 in?lb/s

To design a shaft to transmit a given power P at a frequency f, solve 
Eq. (3.19) for T. This value and the maximum allowable value of t for the 
material can be used with Eq. (3.9) to determine the required shaft 
diameter.

Stress Concentrations
Stress concentrations in circular shafts result from an abrupt change in the 
diameter of a shaft and can be reduced through the use of a fillet (Fig. 3.59). 
The maximum value of the shearing stress at the fillet is

tmax 5 K
Tc
J

 (3.22)

where the stress TcyJ is computed for the smaller-diameter shaft and K is 
a stress concentration factor.

Plastic Deformations
Even when Hooke’s law does not apply, the distribution of strains in a circu-
lar shaft is always linear. If the shearing-stress-strain diagram for the material 
is known, it is possible to plot the shearing stress t against the distance r 
from the axis of the shaft for any given value of tmax (Fig. 3.60). Summing the 
torque of annular elements of radius r and thickness dr, the torque T is

T 5 #
c

0

rt12pr dr2 5 2p#
c

0

r2t dr (3.23)

where t is the function of r plotted in Fig. 3.60.

Modulus of Rupture
An important value of the torque is the ultimate torque TU, which causes 
failure of the shaft. This can be determined either experimentally, or by 
Eq. (3.22) with tmax chosen equal to the ultimate shearing stress tU of the 

Fig. 3.59 Shafts having two different diameters 
with a fillet at the junction.
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Fig. 3.60 Shearing stress distribution for shaft 
with nonlinear stress-strain response.

�

O �c

max�

bee98233_ch03_209-235.indd   225bee98233_ch03_209-235.indd   225 11/15/13   11:42 AM11/15/13   11:42 AM



226

material. From TU, and assuming a linear stress distribution (Fig 3.61), we 
determined the corresponding fictitious stress RT 5 TU cyJ, known as the 
modulus of rupture in torsion.

Solid Shaft of Elastoplastic Material
In a solid circular shaft made of an elastoplastic material, as long as tmax

does not exceed the yield strength tY of the material, the stress distribu-
tion across a section of the shaft is linear (Fig. 3.62a). The torque TY cor-
responding to tmax 5 tY (Fig. 3.62b) is the maximum elastic torque. For a 
solid circular shaft of radius c,

 TY 5
1
2 
pc3tY (3.26)

As the torque increases, a plastic region develops in the shaft around an 
elastic core of radius rY. The torque T corresponding to a given value of 
rY is

 T 5
4

3
 TY   a1 2

1

4
 
r3

Y

c3 b (3.29)

Fig. 3.61 Stress distribution in circular 
shaft at failure.
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As rY approaches zero, the torque approaches a limiting value Tp, called 
the plastic torque:

Tp 5
4

3
 TY (3.30)

Plotting the torque T against the angle of twist f of a solid circular shaft 
(Fig. 3.63), the segment of straight line 0Y defined by Eq. (3.15) and fol-
lowed by a curve approaching the straight line T 5 Tp is

 T 5
4

3
TY   a1 2

1

4
 
f3

Y

f3b (3.34)

Permanent Deformation and Residual Stresses
Loading a circular shaft beyond the onset of yield and unloading it results 
in a permanent deformation characterized by the angle of twist fp 5 f 2 f9, 
where f corresponds to the loading phase described in the previous para-
graph, and f9 to the unloading phase represented by a straight line in 

Fig. 3.62 Stress distributions for elastoplastic shaft at different stages of 
loading: (a) elastic, (b) impending yield, (c) partially yielded, and (d) fully yielded.
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Fig. 3.63 Load-displacement relation for 
elastoplastic material.
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Fig. 3.64. Residual stresses in the shaft can be determined by adding the 
maximum stresses reached during the loading phase and the reverse 
stresses corresponding to the unloading phase.

Torsion of Noncircular Members
The equations for the distribution of strain and stress in circular shafts are 
based on the fact that due to the axisymmetry of these members, cross 
sections remain plane and undistorted. This property does not hold for 
noncircular members, such as the square bar of Fig. 3.65.

Fig. 3.64 Torque-angle of twist response for 
loading past yield and, followed by unloading.

0

T

T

TY

�

�
p� � �

Fig. 3.65 Twisting a shaft of square 
cross section.
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Bars of Rectangular Cross Section
For straight bars with a uniform rectangular cross section (Fig. 3.66), the 
maximum shearing stress occurs along the center line of the wider face of 
the bar. The membrane analogy can be used to visualize the distribution 
of stresses in a noncircular member.

Thin-Walled Hollow Shafts
The shearing stress in noncircular thin-walled hollow shafts is parallel to 
the wall surface and varies both across and along the wall cross section. 
Denoting the average value of the shearing stress t, computed across the 
wall at a given point of the cross section, and by t the thickness of the wall 
at that point (Fig. 3.67), we demonstrated that the product q 5 tt, called 
the shear flow, is constant along the cross section.

The average shearing stress t at any given point of the cross section is

t 5
T

2tA
 (3.50)

Fig. 3.66 Shaft with rectangular cross section, 
showing the location of maximum shearing stress.
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Fig. 3.67 Area for shear flow.
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