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REVIEW AND SUMMARY

This chapter was devoted to the analysis and design of shafts sub-
jected to twisting couples, or torques. Except for the last two sections 
of the chapter, our discussion was limited to circular shafts.
 In a preliminary discussion [Sec. 3.2], it was pointed out that 
the distribution of stresses in the cross section of a circular shaft is 
statically indeterminate. The determination of these stresses, there-
fore, requires a prior analysis of the deformations occurring in the 
shaft [Sec. 3.3]. Having demonstrated that in a circular shaft sub-
jected to torsion, every cross section remains plane and undistorted,
we derived the following expression for the shearing strain in a small 
element with sides parallel and perpendicular to the axis of the shaft 
and at a distance r from that axis:

g 5
rf

L  
(3.2)

where f is the angle of twist for a length L of the shaft (Fig. 3.57). 
Equation (3.2) shows that the shearing strain in a circular shaft var-
ies linearly with the distance from the axis of the shaft. It follows 
that the strain is maximum at the surface of the shaft, where r is 
equal to the radius c of the shaft. We wrote

gmax 5
cf
L
   g 5

r

c
  gmax 

(3.3, 4)

Considering shearing stresses in a circular shaft within the elastic 
range [Sec. 3.4] and recalling Hooke’s law for shearing stress and 
strain, t 5 Gg, we derived the relation

t 5
r

c
  tmax 

(3.6)

which shows that within the elastic range, the shearing stress t in a 
circular shaft also varies linearly with the distance from the axis of 
the shaft. Equating the sum of the moments of the elementary forces 
exerted on any section of the shaft to the magnitude T of the torque 
applied to the shaft, we derived the elastic torsion formulas

tmax 5
Tc
J   

t 5
Tr
J

 (3.9, 10)

where c is the radius of the cross section and J its centroidal polar 
moment of inertia. We noted that J 5 1

2 pc4 for a solid shaft and 
J 5 1

2 p 1c4
2 2 c4

12  for a hollow shaft of inner radius c1 and outer 
radius c2.

Deformations in circular shafts
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Shearing stresses in elastic range
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211 We noted that while the element a in Fig. 3.58 is in pure shear, 
the element c in the same figure is subjected to normal stresses of 
the same magnitude, TcyJ, two of the normal stresses being tensile 
and two compressive. This explains why in a torsion test ductile 
materials, which generally fail in shear, will break along a plane per-
pendicular to the axis of the specimen, while brittle materials, which 
are weaker in tension than in shear, will break along surfaces forming 
a 458 angle with that axis.

In Sec. 3.5, we found that within the elastic range, the angle of twist 
f of a circular shaft is proportional to the torque T applied to it (Fig. 
3.59). Expressing f in radians, we wrote

 
f 5

TL
JG   

(3.16)

where  L 5 length of shaft
 J 5 polar moment of inertia of cross section
 G 5 modulus of rigidity of material

If the shaft is subjected to torques at locations other than its ends 
or consists of several parts of various cross sections and possibly of 
different materials, the angle of twist of the shaft must be expressed 
as the algebraic sum of the angles of twist of its component parts 
[Sample Prob. 3.3]:

 
f 5 a

i

TiLi

JiGi   
(3.17)

 We observed that when both ends of a shaft BE rotate (Fig. 3.60), 
the angle of twist of the shaft is equal to the difference between the 
angles of rotation fB and fE of its ends. We also noted that when 
two shafts AD and BE are connected by gears A and B, the torques 
applied, respectively, by gear A on shaft AD and by gear B on shaft 
BE are directly proportional to the radii rA and rB of the two gears—
since the forces applied on each other by the gear teeth at C are 
equal and opposite. On the other hand, the angles fA and fB through 
which the two gears rotate are inversely proportional to rA and rB—
since the arcs CC9 and CC0 described by the gear teeth are equal 
[Example 3.04 and Sample Prob. 3.4].

If the reactions at the supports of a shaft or the internal torques 
cannot be determined from statics alone, the shaft is said to be stati-
cally indeterminate [Sec. 3.6]. The equilibrium equations obtained 
from free-body diagrams must then be complemented by relations 
involving the deformations of the shaft and obtained from the geom-
etry of the problem [Example 3.05, Sample Prob. 3.5].

In Sec. 3.7, we discussed the design of transmission shafts. We first 
observed that the power P transmitted by a shaft is

 P 5 2p f T (3.20)

where T is the torque exerted at each end of the shaft and f the fre-
quency or speed of rotation of the shaft. The unit of frequency is 
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212 Torsion the revolution per second (s21) or hertz (Hz). If SI units are used, 
T is expressed in newton-meters (N ? m) and P in watts (W). If U.S. 
customary units are used, T is expressed in lb ? ft or lb ? in., and P 
in ft ? lb/s or in ? lb/s; the power may then be converted into horse-
power (hp) through the use of the relation

1 hp 5 550 ft ? lb/s 5 6600 in ? lb/s

To design a shaft to transmit a given power P at a frequency f, you 
should first solve Eq. (3.20) for T. Carrying this value and the maxi-
mum allowable value of t for the material used into the elastic for-
mula (3.9), you will obtain the corresponding value of the parameter 
Jyc, from which the required diameter of the shaft may be calculated 
[Examples 3.06 and 3.07].

In Sec. 3.8, we discussed stress concentrations in circular shafts. 
We saw that the stress concentrations resulting from an abrupt 
change in the diameter of a shaft can be reduced through the use 
of a fillet (Fig. 3.61). The maximum value of the shearing stress at 
the fillet is

 
tmax 5 K

Tc
J

 (3.25)

where the stress TcyJ is computed for the smaller-diameter shaft, and 
where K is a stress-concentration factor. Values of K were plotted in 
Fig. 3.29 on p. 179 against the ratio ryd, where r is the radius of the 
fillet, for various values of Dyd.

Sections 3.9 through 3.11 were devoted to the discussion of plastic 
deformations and residual stresses in circular shafts. We first recalled 
that even when Hooke’s law does not apply, the distribution of strains 
in a circular shaft is always linear [Sec. 3.9]. If the shearing-stress-
strain diagram for the material is known, it is then possible to plot 
the shearing stress t against the distance r from the axis of the shaft 
for any given value of tmax (Fig. 3.62). Summing the contributions to 
the torque of annular elements of radius r and thickness dr, we 
expressed the torque T as

 
T 5 #

c

0

rt12pr dr2 5 2p#
c

0

r2t dr (3.26)

where t is the function of r plotted in Fig. 3.62.

An important value of the torque is the ultimate torque TU which 
causes failure of the shaft. This value can be determined, either 
experimentally, or by carrying out the computations indicated 
above with tmax chosen equal to the ultimate shearing stress tU of 
the material. From TU, and assuming a linear stress distribution 
(Fig 3.63), we determined the corresponding fictitious stress RT 5 
TU cyJ, known as the modulus of rupture in torsion of the given 
material.
 Considering the idealized case of a solid circular shaft made of 
an elastoplastic material [Sec. 3.10], we first noted that, as long as 
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213tmax does not exceed the yield strength tY of the material, the stress 
distribution across a section of the shaft is linear (Fig. 3.64a). The 
torque TY corresponding to tmax 5 tY (Fig. 3.64b) is known as the 
maximum elastic torque; for a solid circular shaft of radius c, we 
have

 TY 5 1
2pc3tY (3.29)
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As the torque increases, a plastic region develops in the shaft around 
an elastic core of radius rY. The torque T corresponding to a given 
value of rY was found to be

 
T 5

4
3

 TY a1 2
1
4

 
r3

Y

c3 b (3.32)

We noted that as rY approaches zero, the torque approaches a limit-
ing value Tp, called the plastic torque of the shaft considered:

 
Tp 5

4
3

 TY (3.33)

 Plotting the torque T against the angle of twist f of a solid 
circular shaft (Fig. 3.65), we obtained the segment of straight line 
0Y defined by Eq. (3.16), followed by a curve approaching the 
straight line T 5 Tp and defined by the equation

 
T 5

4
3

TY a1 2
1
4

 
f3

Y

f3b (3.37)
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214 Torsion Loading a circular shaft beyond the onset of yield and unloading it 
[Sec. 3.11] results in a permanent deformation characterized by the 
angle of twist fp 5 f 2 f9, where f corresponds to the loading 
phase described in the previous paragraph, and f9 to the unloading 
phase represented by a straight line in Fig. 3.66. There will also be 
residual stresses in the shaft, which can be determined by adding the 
maximum stresses reached during the loading phase and the reverse 
stresses corresponding to the unloading phase [Example 3.09].
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The last two sections of the chapter dealt with the torsion of noncir-
cular members. We first recalled that the derivation of the formulas 
for the distribution of strain and stress in circular shafts was based on 
the fact that due to the axisymmetry of these members, cross sections 
remain plane and undistorted. Since this property does not hold for 
noncircular members, such as the square bar of Fig. 3.67, none of the 
formulas derived earlier can be used in their analysis [Sec. 3.12].

It was indicated in Sec. 3.12 that in the case of straight bars with a 
uniform rectangular cross section (Fig. 3.68), the maximum shearing 
stress occurs along the center line of the wider face of the bar. For-
mulas for the maximum shearing stress and the angle of twist were 
given without proof. The membrane analogy for visualizing the dis-
tribution of stresses in a noncircular member was also discussed.

We next analyzed the distribution of stresses in noncircular thin-walled 
hollow shafts [Sec. 3.13]. We saw that the shearing stress is parallel to 
the wall surface and varies both across the wall and along the wall cross 
section. Denoting by t the average value of the shearing stress  computed 
across the wall at a given point of the cross section, and by t the thick-
ness of the wall at that point (Fig. 3.69), we showed that the product 
q 5 tt, called the shear flow, is constant along the cross section.
 Furthermore, denoting by T the torque applied to the hollow 
shaft and by A the area bounded by the center line of the wall cross 
section, we expressed as follows the average shearing stress t at any 
given point of the cross section:

 
t 5

T
2tA

 (3.53)
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