Review and Summary

Normal Strain

Consider arod of length L and uniform cross section, and its deformation é
under an axial load P (Fig. 2.59). The normal strain € in the rod is defined
as the deformation per unit length:

€= (2.1)
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Fig. 2.59 Undeformed and deformed
axially-loaded rod.

In the case of arod of variable cross section, the normal strain at any given
point Q is found by considering a small element of rod at Q:

86 _do
Ax—0 Ax dx

€= (2.2)

Stress-Strain Diagram

A stress-strain diagram is obtained by plotting the stress o versus the strain e
as the load increases. These diagrams can be used to distinguish between
brittle and ductile materials. A brittle material ruptures without any notice-
able prior change in the rate of elongation (Fig. 2.60), while a ductile material
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Fig. 2.60 Stress-strain diagram for a typical
brittle material.
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(a) Low-carbon steel (b) Aluminum alloy

Fig. 2.61 Stress-strain diagrams of two typical ductile metal materials.
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Fig. 2.62 Layer of fiber-reinforced
composite material.

yields after a critical stress oy (the yield strength) has been reached (Fig. 2.61).
The specimen undergoes a large deformation before rupturing, with a
relatively small increase in the applied load. An example of brittle material
with different properties in tension and compression is concrete.

Hooke’s Law and Modulus of Elasticity
The initial portion of the stress-strain diagram is a straight line. Thus, for
small deformations, the stress is directly proportional to the strain:

o = Ee (2.6)
This relationship is Hooke’s law, and the coefficient E is the modulus of

elasticity of the material. The proportional limit is the largest stress for
which Eq. (2.4) applies.

Properties of isotropic materials are independent of direction, while prop-
erties of anisotropic materials depend upon direction. Fiber-reinforced
composite materials are made of fibers of a strong, stiff material embedded
in layers of a weaker, softer material (Fig. 2.62).

Elastic Limit and Plastic Deformation

If the strains caused in a test specimen by the application of a given load
disappear when the load is removed, the material is said to behave elasti-
cally. The largest stress for which this occurs is called the elastic limit of
the material. If the elastic limit is exceeded, the stress and strain decrease
in a linear fashion when the load is removed, and the strain does not
return to zero (Fig. 2.63), indicating that a permanent set or plastic defor-
mation of the material has taken place.
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Fig. 2.63 Stress-strain response of ductile
material loaded beyond yield and unloaded.




Fatigue and Endurance Limit

Fatigue causes the failure of structural or machine components after a
very large number of repeated loadings, even though the stresses remain
in the elastic range. A standard fatigue test determines the number » of
successive loading-and-unloading cycles required to cause the failure
of a specimen for any given maximum stress level ¢ and plots the
resulting o-n curve. The value of ¢ for which failure does not occur,
even for an indefinitely large number of cycles, is known as the endur-
ance limit.

Elastic Deformation Under Axial Loading
If a rod of length L and uniform cross section of area A is subjected at its
end to a centric axial load P (Fig. 2.64), the corresponding deformation is
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Fig. 2.64 Undeformed and
deformed axially-loaded rod.

If the rod is loaded at several points or consists of several parts of various
cross sections and possibly of different materials, the deformation 6 of the
rod must be expressed as the sum of the deformations of its component
parts:
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Statically Indeterminate Problems

Statically indeterminate problems are those in which the reactions and the
internal forces cannot be determined from statics alone. The equilibrium
equations derived from the free-body diagram of the member under con-
sideration were complemented by relations involving deformations and
obtained from the geometry of the problem. The forces in the rod and in
the tube of Fig. 2.65, for instance, were determined by observing that their
sum is equal to P, and that they cause equal deformations in the rod
and in the tube. Similarly, the reactions at the supports of the bar of
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Fig. 2.65 Statically indeterminate problem where
concentric rod and tube have same strain but
different stresses.
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Fig. 2.67 Fully restrained bar of length L.
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Fig. 2.66 (a) Axially-loaded statically-indeterminate
member. (b) Free-body diagram.

Fig. 2.66 could not be obtained from the free-body diagram of the bar
alone, but they could be determined by expressing that the total elonga-
tion of the bar must be equal to zero.

Problems with Temperature Changes
When the temperature of an unrestrained rod AB of length L is increased
by AT, its elongation is

87 = a(AT)L (2.13)

where « is the coefficient of thermal expansion of the material. The cor-
responding strain, called thermal strain, is

er = aAT (2.149)

and no stress is associated with this strain. However, if rod AB is restrained by
fixed supports (Fig. 2.67), stresses develop in the rod as the temperature
increases, because of the reactions at the supports. To determine the magni-
tude P of the reactions, the rod is first detached from its support at B (Fig. 2.68a).
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Fig. 2.68 Determination of reactions for bar of Fig. 2.67
subject to a temperature increase. (a) Support at B removed.
(b) Thermal expansion. (c) Application of support reaction to
counter thermal expansion.




The deformation 6 of the rod occurs as it expands due to of the temperature
change (Fig. 2.68b). The deformation 8, caused by the force P is required to
bring it back to its original length, so that it may be reattached to the support
at B (Fig. 2.68¢).

Lateral Strain and Poisson’s Ratio

When an axial load P is applied to a homogeneous, slender bar
(Fig. 2.69), it causes a strain, not only along the axis of the bar but in any
transverse direction. This strain is the lateral strain, and the ratio of the
lateral strain over the axial strain is called Poisson’s ratio:
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Fig. 2.69 A bar in uniaxial tension.
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Multiaxial Loading
The condition of strain under an axial loading in the x direction is
g, Vo,

ex:— =€Z=_

- - (2.19)

A multiaxial loading causes the state of stress shown in Fig. 2.70. The
resulting strain condition was described by the generalized Hooke’s law for
a multiaxial loading.

Fig. 2.70 State of stress for multiaxial loading.

Dilatation
If an element of material is subjected to the stresses oy, o, o, it will
deform and a certain change of volume will result. The change in volume
per unit volume is the dilatation of the material:

1—2vp

e=—"% (oy+ 0y + 0,) (2.22)

Bulk Modulus

When a material is subjected to a hydrostatic pressure p,

where k is the bulk modulus of the material:
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Fig. 2.71 Positive stress components at
point Q for a general state of stress.

Shearing Strain: Modulus of Rigidity

The state of stress in a material under the most general loading condition
involves shearing stresses, as well as normal stresses (Fig. 2.71). The
shearing stresses tend to deform a cubic element of material into an
oblique parallelepiped. The stresses 7,, and 7,, shown in Fig. 2.72 cause
the angles formed by the faces on which they act to either increase or
decrease by a small angle v,,. This angle defines the shearing strain cor-
responding to the x and y directions. Defining in a similar way the shear-
ing strains vy, and v,,, the following relations were written:

Ty = Al 70— Gy, T = Gy (2.27, 28)
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Fig. 2.72 Deformation of unit cubic
element due to shearing stress.

which are valid for any homogeneous isotropic material within its propor-
tional limit in shear. The constant G is the modulus of rigidity of the mate-
rial, and the relationships obtained express Hooke’s law for shearing stress
and strain. Together with Egs. (2.20), they form a group of equations rep-
resenting the generalized Hooke’s law for a homogeneous isotropic mate-
rial under the most general stress condition.

While an axial load exerted on a slender bar produces only normal
strains—both axial and transverse—on an element of material oriented




along the axis of the bar, it will produce both normal and shearing strains
on an element rotated through 45° (Fig. 2.73). The three constants E, v,
and G are not independent. They satisfy the relation

E
= s 2.34
2G g (2.39)

This equation can be used to determine any of the three constants in terms
of the other two.

Saint-Venant’s Principle

Saint-Venant's principle states that except in the immediate vicinity of the
points of application of the loads, the distribution of stresses in a given
member is independent of the actual mode of application of the loads. This
principle makes it possible to assume a uniform distribution of stresses in
a member subjected to concentrated axial loads, except close to the points
of application of the loads, where stress concentrations will occur.

Stress Concentrations
Stress concentrations will also occur in structural members near a discon-
tinuity, such as a hole or a sudden change in cross section. The ratio of
the maximum value of the stress occurring near the discontinuity over the
average stress computed in the critical section is referred to as the stress-
concentration factor of the discontinuity:

o-max

K=" (2.40)

o-ave

Plastic Deformations

Plastic deformations occur in structural members made of a ductile material
when the stresses in some part of the member exceed the yield strength of
the material. An idealized elastoplastic material is characterized by the
stress-strain diagram shown in Fig. 2.74. When an indeterminate structure
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Fig. 2.74 Stress-strain diagram for an
idealized elastoplastic material.

undergoes plastic deformations, the stresses do not, in general, return to
zero after the load has been removed. The stresses remaining in the various
parts of the structure are called residual stresses and can be determined by
adding the maximum stresses reached during the loading phase and the
reverse stresses corresponding to the unloading phase.

(b)
Fig. 2.73 Representations of strain in an
axially-loaded bar: (a) cubic strain element with
faces aligned with coordinate axes; (b) cubic strain
element with faces rotated 45° about z-axis.




