

PROBLEM 11.103

A volleyball player serves the ball with an initial velocity \mathbf{v}_0 of magnitude 13.40 m/s at an angle of 20° with the horizontal. Determine (*a*) if the ball will clear the top of the net, (*b*) how far from the net the ball will land.

SOLUTION	
First note	$(v_x)_0 = (13.40 \text{ m/s}) \cos 20^\circ = 12.5919 \text{ m/s}$ $(v_y)_0 = (13.40 \text{ m/s}) \sin 20^\circ = 4.5831 \text{ m/s}$
	$A = \frac{1}{2 \cdot 1} $
(a) <u>Horizontal</u>	motion. (Uniform)
	$x = 0 + (v_x)_0 t$
At C	9 m = $(12.5919 \text{ m/s})t$ or $t_c = 0.71475 \text{ s}$
<u>Vertical m</u>	otion. (Uniformly accelerated motion)
	$y = y_0 + (v_y)_0 t - \frac{1}{2}gt^2$
At <i>C</i> :	$y_C = 2.1 \text{ m} + (4.5831 \text{ m/s})(0.71475 \text{ s})$
	$-\frac{1}{2}(9.81 \text{ m/s}^2)(0.71475 \text{ s})^2$
	= 2.87 m
	$y_C > 2.43$ m (height of net) \Rightarrow ball clears net
(b) At B , $y = 0$	0 = 2.1 m + (4.5831 m/s) $t - \frac{1}{2}(9.81 \text{ m/s}^2)t^2$
Solving	$t_B = 1.271175$ s (the other root is negative)
Then	$d = (v_x)_0 t_B = (12.5919 \text{ m/s})(1.271175 \text{ s})$ = 16.01 m
The ball la	b = (16.01 - 9.00) m = 7.01 m from the net

PROBLEM 12.17

A 5000-lb truck is being used to lift a 1000 lb boulder *B* that is on a 200 lb pallet *A*. Knowing the acceleration of the truck is

1 ft/s^2 , determine (a) the horizontal force between the tires and the ground, (b) the force between the boulder and the pallet.

SOLUTION

Kinematics:

Masses:

$$\mathbf{a}_{T} = 1 \text{ m/s}^{2}$$

 $\mathbf{a}_{A} = \mathbf{a}_{B} = 0.5 \text{ m/s}^{2}$
 $m_{T} = \frac{5000}{32.2} = 155.28 \text{ slugs}$
 $m_{A} = \frac{200}{32.2} = 6.211 \text{ slugs}$
 $m_{B} = \frac{1000}{32.2} = 31.056 \text{ slugs}$

Let *T* be the tension in the cable. Apply Newton's second law to the lower pulley, pallet and boulder.

Vertical components + :

$$2T - (m_A + m_B)g = (m_A + m_B)a_A$$

2T - (37.267)(32.2) = (37.267)(0.5)
T = 609.32 lb

Apply Newton's second law to the truck.

Human centrifuges are often used to simulate different acceleration levels for pilots. When aerospace physiologists say that a pilot is pulling 9g's, they mean that the resultant normal force on the pilot from the bottom of the seat is nine times their weight. Knowing that the centrifuge starts from rest and has a constant angular acceleration of 1.5 RPM per second until the pilot is pulling 9g's and then continues with a constant angular velocity, determine (a) how long it will take for the pilot to reach 9g's (b) the angle θ of the normal force once the pilot reaches 9 g's. Assume that the force parallel to the seat is zero.

SOLUTION

 $\alpha = 1.5 \text{ RPM/s} = 0.157 \text{ rad/s}^2$ Given: $\omega_0 = 0$ N = 9 mgR = 7 mFree Body Diagram of Pilot: Equations of Motion: $\sum F_y = ma_y \qquad \sum F_n = ma_n$ $N\sin\theta - mg = m(0) \qquad N\cos\theta = mR\omega^2$ $N\sin\theta = mg \quad (1) \qquad \qquad \omega = \sqrt{\frac{N\cos\theta}{mR}}$ тa (2)Substitute N=9mg into (1): $9mg \sin \theta = mg$ $\theta = \sin^{-1}\left(\frac{1}{9}\right)$ $\theta = 6.379^{\circ}$ Substitute N=9mg and θ into (2): $\omega = \sqrt{\frac{9*9.81\cos 6.379^{\circ}}{7}}$ $\omega = 3.540 \text{ rad/s}$ For constant angular acceleration: $\omega = \omega_0 + \alpha t$ 3.540 = 0 + 0.157 * tt = 22.55 s(*a*) Solving for t: $\theta = 6.379^{\circ}$ From earlier:

PROBLEM 12.38

AB 30° 45° C5 kg1.6 m

PROBLEM 12.39

A single wire ACB passes through a ring at C attached to a sphere which revolves at a constant speed v in the horizontal circle shown. Knowing that the tension is the same in both portions of the wire, determine the speed v.

