

SOLUTION

First note

$$
\begin{aligned}
& \left(v_{x}\right)_{0}=(13.40 \mathrm{~m} / \mathrm{s}) \cos 20^{\circ}=12.5919 \mathrm{~m} / \mathrm{s} \\
& \left(v_{y}\right)_{0}=(13.40 \mathrm{~m} / \mathrm{s}) \sin 20^{\circ}=4.5831 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

(a) Horizontal motion. (Uniform)

$$
x=0+\left(v_{x}\right)_{0} t
$$

At C

$$
9 \mathrm{~m}=(12.5919 \mathrm{~m} / \mathrm{s}) t \text { or } t_{C}=0.71475 \mathrm{~s}
$$

Vertical motion. (Uniformly accelerated motion)

$$
y=y_{0}+\left(v_{y}\right)_{0} t-\frac{1}{2} g t^{2}
$$

At C :

$$
\begin{aligned}
y_{C}= & 2.1 \mathrm{~m}+(4.5831 \mathrm{~m} / \mathrm{s})(0.71475 \mathrm{~s}) \\
& -\frac{1}{2}\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)(0.71475 \mathrm{~s})^{2} \\
= & 2.87 \mathrm{~m}
\end{aligned}
$$

$$
y_{C}>2.43 \mathrm{~m}(\text { height of net }) \Rightarrow \text { ball clears net }
$$

(b) At $B, y=0$:

$$
0=2.1 \mathrm{~m}+(4.5831 \mathrm{~m} / \mathrm{s}) t-\frac{1}{2}\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right) t^{2}
$$

Solving

$$
t_{B}=1.271175 \mathrm{~s} \quad \text { (the other root is negative) }
$$

Then

$$
\begin{aligned}
d & =\left(v_{x}\right)_{0} t_{B}=(12.5919 \mathrm{~m} / \mathrm{s})(1.271175 \mathrm{~s}) \\
& =16.01 \mathrm{~m}
\end{aligned}
$$

The ball lands

$$
b=(16.01-9.00) \mathrm{m}=7.01 \mathrm{~m} \text { from the net }
$$

PROBLEM 12.17

A $5000-\mathrm{lb}$ truck is being used to lift a 1000 lb boulder B that is on a 200 lb pallet A. Knowing the acceleration of the truck is
$1 \mathrm{ft} / \mathrm{s}^{2}$, determine (a) the horizontal force between the tires and the ground, (b) the force between the boulder and the pallet.

SOLUTION

Kinematics:

$$
\mathbf{a}_{T}=1 \mathrm{~m} / \mathrm{s}^{2} \longleftarrow
$$

$$
\mathbf{a}_{A}=\mathbf{a}_{B}=0.5 \mathrm{~m} / \mathrm{s}^{2} \uparrow
$$

Masses:
$m_{T}=\frac{5000}{32.2}=155.28$ slugs
$m_{A}=\frac{200}{32.2}=6.211$ slugs
$m_{B}=\frac{1000}{32.2}=31.056$ slugs
Let T be the tension in the cable. Apply Newton's second law to the lower pulley, pallet and boulder.

Vertical components $+\uparrow$:

$$
\begin{aligned}
& 2 T-\left(m_{A}+m_{B}\right) g=\left(m_{A}+m_{B}\right) a_{A} \\
& 2 T-(37.267)(32.2)=(37.267)(0.5) \\
& T=609.32 \mathrm{lb}
\end{aligned}
$$

Apply Newton's second law to the truck.

PROBLEM 12.17 (Continued)

Horizontal components $\pm: F-T=m_{T} a_{T}$
(a) Horizontal friction force between tires and ground.

$$
F=T+m_{T} a_{T}=609.32+(155.28)(1.0) \quad F=765 \mathrm{lb}
$$

Apply Newton's second law to the boulder.

$$
\begin{aligned}
& \text { Vertical components }+\uparrow: \quad F_{A B}-m_{B} g=m_{B} a_{B} \\
& \qquad F_{A B}=m_{B}(g+a)=31.056(32.2+0.5)
\end{aligned}
$$

(b) Contact force between boulder and pallet:
$F_{A B}=1016 \mathrm{lb}$

PROBLEM 12.38

Human centrifuges are often used to simulate different acceleration levels for pilots. When aerospace physiologists say that a pilot is pulling $9 g$'s, they mean that the resultant normal force on the pilot from the bottom of the seat is nine times their weight. Knowing that the centrifuge starts from rest and has a constant angular acceleration of 1.5 RPM per second until the pilot is pulling $9 g$'s and then continues with a constant angular velocity, determine (a) how long it will take for the pilot to reach $9 g$'s (b) the angle θ of the normal force once the pilot reaches 9 g 's. Assume that the force parallel to the seat is zero.

SOLUTION

Given:

$$
\begin{aligned}
& \alpha=1.5 \mathrm{RPM} / \mathrm{s}=0.157 \mathrm{rad} / \mathrm{s}^{2} \\
& \omega_{0}=0 \\
& \mathrm{~N}=9 \mathrm{mg} \\
& R=7 \mathrm{~m}
\end{aligned}
$$

Free Body Diagram of Pilot:

Equations of Motion:

$\sum F_{y}=m a_{y}$
$N \sin \theta-m g=m(0)$

$$
\begin{equation*}
N \sin \theta=m g \tag{1}
\end{equation*}
$$

$$
\sum F_{n}=m a_{n}
$$

$$
\mathrm{N} \cos \theta=m R \omega^{2}
$$

$$
\begin{equation*}
\omega=\sqrt{\frac{\mathrm{Ncos} \theta}{m R}} \tag{2}
\end{equation*}
$$

$\omega=\sqrt{\frac{\mathrm{N} \cos \theta}{m R}}$
Substitute $\mathrm{N}=9 \mathrm{mg}$ into (1): $9 \mathrm{mg} \sin \theta=m g$

$$
\begin{aligned}
& \theta=\sin ^{-1}\left(\frac{1}{9}\right) \\
& \theta=6.379^{\circ}
\end{aligned}
$$

Substitute $\mathrm{N}=9 \mathrm{mg}$ and θ into (2):

$$
\omega=\sqrt{\frac{9 * 9.81 \cos 6.379^{\circ}}{7}}
$$

$$
\omega=3.540 \mathrm{rad} / \mathrm{s}
$$

For constant angular acceleration:

$$
\begin{gathered}
\omega=\omega_{0}+\alpha t \\
3.540=0+0.157 * t
\end{gathered}
$$

(a) Solving for t :

$$
t=22.55 \mathrm{~s}
$$

From earlier:

$$
\theta=6.379^{\circ} .
$$

SOLUTION

$$
\begin{align*}
& \text { I } 30^{y} \quad \pm \boldsymbol{v}^{\boldsymbol{y}} \quad \pm \Sigma F_{x}=m a: T\left(\sin 30^{\circ}+\sin 45^{\circ}\right)=\frac{m v^{2}}{\rho} \tag{1}\\
& +\uparrow \Sigma F_{y}=0: \quad T\left(\cos 30^{\circ}+\cos 45^{\circ}\right)-m g=0 \\
& T\left(\cos 30^{\circ}+\cos 45^{\circ}\right)=m g \tag{2}
\end{align*}
$$

Divide Eq. (1) by Eq. (2):

$$
\frac{\sin 30^{\circ}+\sin 45^{\circ}}{\cos 30^{\circ}+\cos 45^{\circ}}=\frac{v^{2}}{\rho g}
$$

$v^{2}=0.76733 \rho g=0.76733(1.6 \mathrm{~m})\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)=12.044 \mathrm{~m}^{2} / \mathrm{s}^{2} \quad v=3.47 \mathrm{~m} / \mathrm{s}$

